In order to provide complete functionality, this web site needs your explicit consent to store browser cookies. If you don't allow cookies, you may not be able to use certain features of the web site including but not limited to: log in, buy products, see personalized content, switch between site cultures. It is recommended that you allow all cookies.

This content is currently only available to TSIA members.

If you believe you are seeing this message in error,
please let us know.


The message, “Helping will sell, selling won’t help,” is something that we repeat often here at TSIA, through our books, conferences, and research. That is because it is a concept that we truly believe in, because we’ve seen it in action time and again. If we apply this thought to data analytics, would it imply that data insights for the customer will sell, but data insights for the salesperson won’t help? I suppose it depends on the type of insights you’re able to gather.

Explaining How LAER Applies to Data Analytics

Before we unpack this riddle, let’s provide context with TSIA’s LAER framework:

  • Land: Land a new customer
  • Adopt: Optimize the customer’s adoption of your platform
  • Expand: Expand your customer’s footprint via upsell and cross-sell
  • Renew: Increase renewal rates of your customers

From a data perspective, there is a considerable overlap across all of the phases of LAER.

In order to LAND customers, you need to match customer demographicsfinancial status, and customer desired outcomes with your product’s positioning and portfolio. For each potential customer, you should estimate their need or propensity to purchase each of your offerings based on the priority of their outcomes, and your offerings’ abilities to help them achieve those outcomes.

After the new customer is on board, in order to optimize the ADOPT phase, you’ll need to track how well the customer is leveraging the purchased offerings. We refer to this as “consumption analytics,” i.e. understanding how customers are consuming your products. Tracking an overall customer account health score, as well as adoption scores of each purchased offering, will enable you to proactively improve adoption. You’ll then be able to identify which customers of a certain profile and tenure are under-utilizing or getting the most of your platform.

For the EXPAND phase, all of the previous data features are in applicable. One important note is that you’ll need to consistently refresh your customer’s propensity to purchase each of your remaining offerings.

Lastly, for the RENEW phase, the relevant data is the aggregation of all the previous steps.

Successful Collection of Data Insights Depends on Operational Alignment

So, if the data is the same, then how can the statement, “Data insights for the customer will sell, data insights for the salesperson won’t help,” be true? It all comes down to how you and your entire company leverages and delivers the insights to your customer. The data model is easy, in fact, it can be as simple as the below mock-up of a customer insights table.

customer insights table  

(Click image to enlarge.)

The hard part is organizational alignment and optimizing multi-channel communications with your customer. If your Marketing, Sales, Customer Success, and Support Services teams all have the best insights and a unified view of the customer, things can still go horribly wrong if the teams continue to operate in silos. The customer can be overwhelmed by conflicting messages around the same topic from different departments, or, the customer could receive no communication because of internal miscommunication of which department is responsible for handling their issue.

If your company is devoted to alignment and breaking down operational silos, how can analytics help? Reports and business intelligence (BI) can be useful and are a good first step, but they require your employees and customers to pursue the insight. The next value add of analytics should focus on triggered events and automation. If a proactive “adoption play” on purchased offering #2 is needed because your customer’s three-month adoption score of that offering is in the bottom quartile and the customer’s overall health is red, automate the creation of a task for your customer success manager (CSM). Further, via automation, communicate and coordinate with other departments that this is priority number one, and provide clear line of sight to the status and timing of the event.

Lastly, to get the most out this data driven automation, your analytics team needs to provide predictive and prescriptive insights to your team, as well as your customer. For each suggested play, whether it’s adoption, expansion, or renewal, analytics should provide an estimated impact on the corresponding KPI (predictive) and guidance on the nature of the play, such as scripts (prescriptive). Once this automation with both predictive and prescriptive insights are in place, your team can then optimize the impact of each play.

Learn Even More About How Everyone in Your Organization Can Better Use Data Analytics

So, the data underlying helping and selling are the same. Does your company have this data unified in one place? Are you organizationally aligned to agree on what to do with the data, and then, are you communicating internally so as to optimize multi-channel communications with your customers? Are you getting high value-add insights and data driven automation from your Analytics team? Regardless of how you answer these questions, TSIA is here to help you optimize your technology service and sales motions, so please reach out to us.

In the meantime, read more about how this theme relates to their specific area of research up until the conference to show that cross-functional collaboration impacts everyone.

Read more posts in the "Blending Service and Sales Motions" blog series:

Download Now

Jeremy DalleTezze

About Author Jeremy DalleTezze

Jeremy DalleTezze, PhD, is the senior vice president of software development and analytics for TSIA. His professional background includes positions as a senior analyst, analytics consultant, and assistant professor of business, working with both small and large corporations on topics such as revenue forecasting, retail chain optimization, web analytics, text mining, and customer analytics.

Jeremy's favorite topics to discuss